1、没有。因为平方根里的数字一定要大于或等于零才行。负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
没有,只有正数和0有平方根,正数的平方根互为相反数,0的平方根是0,算数平方根也只有正数和0有,那么一个数的算术平方根就是那个数平方根中的正数。负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。
负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
实数范围内负数没有平方根,复数范围内,负数有两个虚数平方根。在有理数范围中,只有非负数(正数或0)有平方根,因为有理数的平方都为非负数(正数或0)。例:5的平方为25,而-5的平方也为25。
1、实数范围内负数没有平方根,复数范围内,负数有两个虚数平方根。在有理数范围中,只有非负数(正数或0)有平方根,因为有理数的平方都为非负数(正数或0)。例:5的平方为25,而-5的平方也为25。
2、负数没有平方根;原因如下:因为任何数的二次幂都是非负数,也就是说:没有哪一个数的平方会是一个负数. 因此,负数就不存在平方根了。规定:0的算术平方根为0。
3、负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
1、负数没有平方根;原因如下:因为任何数的二次幂都是非负数,也就是说:没有哪一个数的平方会是一个负数. 因此,负数就不存在平方根了。规定:0的算术平方根为0。
2、没有,只有正数和0有平方根,正数的平方根互为相反数,0的平方根是0,算数平方根也只有正数和0有,那么一个数的算术平方根就是那个数平方根中的正数。负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。
3、实数范围内负数没有平方根,复数范围内,负数有两个虚数平方根。在有理数范围中,只有非负数(正数或0)有平方根,因为有理数的平方都为非负数(正数或0)。例:5的平方为25,而-5的平方也为25。
4、负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
1、实数范围内负数没有平方根,复数范围内,负数有两个虚数平方根。在有理数范围中,只有非负数(正数或0)有平方根,因为有理数的平方都为非负数(正数或0)。例:5的平方为25,而-5的平方也为25。
2、负数没有平方根;原因如下:因为任何数的二次幂都是非负数,也就是说:没有哪一个数的平方会是一个负数. 因此,负数就不存在平方根了。规定:0的算术平方根为0。
3、没有,只有正数和0有平方根,正数的平方根互为相反数,0的平方根是0,算数平方根也只有正数和0有,那么一个数的算术平方根就是那个数平方根中的正数。负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。
1、负数没有平方根;原因如下:因为任何数的二次幂都是非负数,也就是说:没有哪一个数的平方会是一个负数. 因此,负数就不存在平方根了。规定:0的算术平方根为0。
2、负数没有平方根。只有正数和0有平方根,正数的平方根互为相反数,0的平方根是0,算数平方根也只有正数和0有,那么一个数的算术平方根就是那个数平方根中的正数。
3、负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
4、负数在实数系内没有平方根,只有在复数系内,负数有一对平方根。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。